Day: April 4, 2018

  • Machine Learning for Data Streams: with Practical Examples in MOA

    Machine Learning for Data Streams: with Practical Examples in MOA

    Today many information sources—including sensor networks, financial markets, social networks, and healthcare monitoring—are so-called data streams, arriving sequentially and at high speed. Analysis must take place in real time, with partial data and without the capacity to store the entire data set. This book presents algorithms and techniques used in data stream mining and real-time analytics. Taking a hands-on approach, the book demonstrates the techniques using MOA (Massive Online Analysis), a popular, freely available open-source software framework, allowing readers to try out the techniques after reading the explanations.

    The book first offers a brief introduction to the topic, covering big data mining, basic methodologies for mining data streams, and a simple example of MOA. More detailed discussions follow, with chapters on sketching techniques, change, classification, ensemble methods, regression, clustering, and frequent pattern mining. Most of these chapters include exercises, an MOA-based lab session, or both. Finally, the book discusses the MOA software, covering the MOA graphical user interface, the command line, use of its API, and the development of new methods within MOA. The book will be an essential reference for readers who want to use data stream mining as a tool, researchers in innovation or data stream mining, and programmers who want to create new algorithms for MOA.

    • Series: Adaptive Computation and Machine Learning series
    • Hardcover: 288 pages
    • Publisher: The MIT Press (March 2, 2018)
    • Language: English
    • ISBN-10: 0262037793
    • ISBN-13: 978-0262037792
  • Letters to a Young PhD Student

    Rainer Maria Rilke gave in “Letters to a Young Poet” some advice to a young poet on how a poet should feel, love, and seek truth in poetry :

    “Nobody can advise you and help you. Nobody. There is only one way—Go into yourself.”

    I can recommend to young PhD students, only two things:

    • Do always more than your advisor ask you
    • Focus on an important research question

    I can suggest one book to be more effective in research and in life:

    The Seven Habits of Highly Effective People by Stephen Covey