
Batch-Incremental versus Instance-Incremental
Learning in Dynamic and Evolving Data

Jesse Read2, Albert Bifet1, Bernhard Pfahringer1, and Geoff Holmes1

1 University of Waikato
Hamilton, New Zealand

{abifet,bernhard,geoff}@cs.waikato.ac.nz
2 Universidad Carlos III

Madrid, Spain
jesse@tsc.uc3m.es

Abstract. Many real world problems involve the challenging context of
data streams, where classifiers must be incremental: able to learn from a
theoretically-infinite stream of examples using limited time and memory,
while being able to predict at any point. Two approaches dominate the
literature: batch-incremental methods that gather examples in batches
to train models; and instance-incremental methods that learn from each
example as it arrives. Typically, papers in the literature choose one of
these approaches, but provide insufficient evidence or references to jus-
tify their choice. We provide a first in-depth analysis comparing both
approaches, including how they adapt to concept drift, and an extensive
empirical study to compare several different versions of each approach.
Our results reveal the respective advantages and disadvantages of the
methods, which we discuss in detail.

Keywords: data streams, incremental, dynamic, evolving, on-line

1 Introduction

The trend towards dynamic data sources is clear, both in the real world and the
academic literature. Modern data sources are not only dynamic but generated
at high speed in real time. Such contexts can be found in sensor applications,
measurements in network monitoring and traffic management, log records or
click-streams in web exploration, manufacturing processes, call-detail records,
email, blogs, news feeds, and social networks. Real-time analysis of these data
streams is becoming a key area of data mining research as the number of appli-
cations demanding such processing increases.

A data stream environment has different requirements from the traditional
batch learning setting. The most significant are the following, as outlined in [1]:

– be ready to predict at any point;
– data may be evolving over time; and
– expect an infinite stream, but process it under finite resources (time and

memory).



It is important to note that in this study we do not tackle two important
aspects of this setting. First, we do not consider changes to the input distri-
bution in terms of the addition, deletion or updating of attributes. In a sensor
network, for example, a new sensor could be added to or deleted from an existing
network, or a new sensor could replace an old one and produce a different range
of values. Second, we assume that all instances can be labelled. Labels could,
in practice, come at a cost. Stream-based methods to tackle these problems are
being developed but are beyond the scope of this study.

The approaches to data-stream classification in the literature can generally
be considered as being of one of two types: batch-incremental, or instance incre-
mental.

In the batch-incremental approach, a traditional batch-learning method is
trained on batches of the data: every w new examples form a batch, and when
that batch is complete, it is given to a learner to train on. The main disadvantages
of these methods are that they:

– require a parameter w specifying the batch-size;
– are forced to delete trained models to make room for new ones; and
– cannot learn from the most recent examples until a new batch is full.

Having to delete trained models may affect these methods’ ability to learn a
complete concept, and not being able to learn from new examples immediately
may affect their ability to respond to a new concept.

Instance-incremental methods are truly incremental in the sense that they
learn from each training example as it arrives. This category includes lazy learn-
ers (like k-Nearest Neighbour, e.g., [2, 3]) and incremental learners such as Naive
Bayes [4] and Hoeffding Trees [5] that can essentially learn indefinitely. Due to
their incremental nature, instance-incremental methods are often chosen over
batch-incremental methods, but they also have disadvantages; most notably:

– are fewer in number than batch methods (thus a smaller selection of appro-
priate methods); and often

– only learn a concept correctly from a huge number of examples.

For example, Hoeffding Trees grow very slowly with respect to the number of
instances they observe. Lazy methods such as k-Nearest Neighbour learn more
quickly in this respect from far fewer examples, but these methods are limited to
a relatively small internal buffer of instances, that they must search through and
add to for every new example in the stream. Thus, kNN methods must discard
information over time like batch-incremental methods do (although only one
instance at a time in this case).

Since data streams can be susceptible to concept drift, response to concept
drift is an important issue; although detecting drift is a more important is-
sue for instance-incremental methods like Hoeffding Trees. k-Nearest Neighbour
and batch-incremental methods adapt to some extent automatically, as they are
forced to phase out part of their model over time due to resource limitations,
but Hoeffding Trees will simply learn a new concept ‘on top’ of an old concept



and, therefore, often perform better when used with a scheme with an explicit
concept-change detector [6].

In the following section we review batch-incremental and instance-incremental
methods. Although both kinds of methods have seen improvement over the
years, so far no exhaustive comparison study has been published. Instance-
incremental papers consistently mention the benefits of learning incrementally,
whereas batch-incremental papers consistently mention that batch-learning is
adequate for data streams.

In this paper we address this important lack of knowledge. We investigate the
relative importance of the advantages and disadvantages of both approaches with
a large empirical evaluation involving a variety of concept-drifting data streams
and several of the best batch-incremental and instance-incremental approaches
from the literature. We present these results as evidence indicating which ap-
proaches are better in which circumstances; thus providing crucial information
for researchers deciding on an approach to use. It should be noted that such
studies have been crucial to the development of classification algorithms in the
non-incremental batch setting, both in terms of improving the quality of datasets
used for evaluation [7] and for the assessment of overall classifier performance [8].

2 Prior Work

Naive Bayes [4] is a widely known instance-incremental learner; it simply updates
internal counters with each new instance and uses these counters to assign a
class in a probabilistic fashion to a new item in the stream. Stochastic Gradient
Descent [9] is another incremental algorithm which forms the base for many
neural network methods.

Naive Bayes provides a baseline for instance-incremental classification, but
in terms of performance, has already been superseded by Hoeffding Trees [5]:
an incremental, anytime decision tree induction algorithm that is capable of
learning from massive data streams by exploiting the fact that a small sample
is often enough to choose an optimal splitting attribute.

Bagging and Boosting ensemble methods can be adapted to the stream set-
ting and do improve the accuracy of base classifier methods. Oza and Russell [10,
11] proposed Online Bagging which gives each example a weight according to a
Poisson distribution. This method has been shown to work well with Hoeffding
Trees [12]. A more recent version of Bagging is presented in [13] which obtains
better accuracy albeit at the cost of additional use of computational resources.

Batch-incremental methods cannot learn instance-by-instance, but must cre-
ate models from batches, and at some point remove them as memory fills up.
The size of the batch must be chosen to provide a balance between best model
accuracy (large batches) and best response to new instances (smaller batches).
In this context, it makes sense to use an ensemble, where several models are cre-
ated from relatively small batches and their predictive power is combined under a
voting scheme, such as in [14] and the Accuracy Weighted Ensemble (AWE) [15],
where typically, when the maximum number of models is reached (the ensemble



Table 1: The methods we consider. Ensemble iterations are specified by param-
eter n. Note that Accuracy Weighted Ensemble (AWE-) can be used with any
classifier; Leveraging Bagging (LB-) can be used with any incremental classifier.

Key Classifier Parameters

NB Naive Bayes
SGD Stochastic Gradient Descent
HT Hoeffding Tree
LB-HT Leveraging Bagging / HT n = 10
kNN k Nearest Neighbour w = 1000, k = 10
LB-kNN Leveraging Bagging / kNN n = 10
AWE-SMO AWE of Support Vector Machines w = 500, n = 10
AWE-J48 AWE of C4.5 Decision Trees w = 500, n = 10
AWE-LR AWE of Logistic Regression w = 500, n = 10

size) the oldest model is reset with a model built from the newest batch. In AWE,
ensemble members are additionally weighted by their classification performance.

The k-Nearest Neighbour algorithm, which assigns the most common class
of the k most similar examples, has been used in data streams in [2]. This
algorithm is naturally suited to this setting because of its instance-incremental
nature. Improved searching [3] and instance-compressing techniques [16] have
been shown to improve its capacity considerably.

Reacting to concept drift is a fundamental part of learning from data streams.
kNN and batch-incremental methods inherently phase out data (and thus, old
concepts) but instance-incremental models such as Hoeffding Trees need an ex-
plicit change detection, or else they will learn a new concept ‘on top of’ and old
concept. ADWIN [6] keeps a variable-length window of recently seen items (such
as the current classification performance) and signals change when the concept
within this window changes, and thus can be coupled with any method that
requires explicit change detection, as has been done successfully with Hoeffding
Trees in [12].

3 Experimental Setup and Methodology

We compare the performance of the batch-incremental methods (using the recent
Accuracy Weighted Ensemble method of [15]) employed with powerful batch clas-
sifiers (Support Vector Machines, C4.5 Decision Trees, Logistic Regression) with
instance-incremental methods (Naive Bayes, Hoeffding Tree ensembles, Stochas-
tic Gradient Descent, and k Nearest Neighbour variations). These methods, and
their parameters, are displayed in Table 1. All methods have been implemented
in Java extending the MOA framework for data streams [18]. Any parameters
not shown in the table are the default ones set in this framework.

We use the experimental framework for concept drift presented in [1]: con-
sidering data streams as data generated from pure distributions, we can model



a concept drift event as a weighted combination of two pure distributions that
characterizes the target concepts before and after drift. This framework defines
the probability that a new instance of the stream belongs to the new concept
after the drift based on the sigmoid function.

3.1 Data

In our experiments we use a range of both real and synthetic data sources.
Synthetic data has several advantages–it is easier to reproduce and there is

little cost in terms of storage and transmission. We use the data generators most
commonly found in the literature.

SEA Concepts Generator An artificial dataset, introduced in [19], which
contains abrupt concept drift. It is generated using three attributes. All
attributes have values between 0 and 10. The dataset is divided into four
concepts by using different thresholds θ; such that: f1 +f2 ≤ θ where f1 and
f2 are the first two attributes, for θ = 9, 8, 7 and 9.5.

Rotating Hyperplane The orientation and position of a hyperplane in d-
dimensional space is changed to produce concept drift; see [20].

Random RBF Generator Using a fixed number of centroids of random po-
sition, standard deviation, class label and weight. Drift is introduced by
moving the centroids with constant speed.

LED Generator The goal is to predict the digit displayed on a seven-segment
LED display, where each attribute has a 10inverted; LED comprises 24 binary
attributes, 17 of which are irrelevant; see [21].

We consider three of the largest datasets from the UCI repository [22]:

Forest Covertype Contains the forest cover type for 30 x 30 meter cells ob-
tained from US Forest Service data. It contains 581, 012 instances and 54
attributes. It has been used in, for example, [23, 10].

Poker-Hand 1, 000, 000 instances represent all possible poker hands. Each card
in a hand is described by two attributes: suit and rank. Thus there are 10
attributes describing each hand. The class indicates the value of a hand. We
sorted by rank and suit and removed duplicates.

Electricity Contains 45, 312 instances describing electricity demand. A class
label identifies the change of the price relative to a moving average of the
last 24 hours. It was described by [24] and analysed also in [17].

Since these real datasets are relatively small compared to the synthetic
datasets we consider, and because we do not know when drift occurs (or, in-
deed, if there is any drift) we simulate concept drift, joining the three datasets,
merging attributes, and supposing that each dataset corresponds to a different
concept, as described in [13].

Text data is also an important source of data streams in the real-world. We
consider the following two sources:



20 Newsgroups [25] is a dataset commonly used in cluster analysis. It has
19300 entries, each represented with 1000 binary attributes (word pres-
ence/absence), corresponding to at least one of 20 newsgroups. We convert
this dataset into 20 binary classification problems, one for each newsgroup,
and append them all into one large binary-class dataset. Thus we model a
stream (similarly to CovPokElec) of 386,000 records with 19 shifts in con-
cept.

IMDB A dataset used in multi-label learning [26]. It contains 120919 textual
movie plot summaries of 1000 binary class attributes and 0/1-associations
to genres. We use the drama genre, which is the most frequently occurring.

3.2 Methodology

The experiments were performed on 2.66 GHz Core 2 Duo E6750 machines with
4 GB of memory. We used the Interleaved Test-Then-Train evaluation method-
ology: every example was used for testing the model before using it to train.
From the synthetic concepts we generated 1 million examples with the following
parameters:

– RBF(x,v): RandomRBF of 5 classes with x centroids moving at speed v.
– HYP(x,v): Hyperplane of 2 classes with x attributes changing at speed v.
– SEA(v): SEA dataset, with length of change v.
– LED(v): LED dataset, with length of change v.

The Nemenyi test [27] is used for computing significance: it is an appropriate
test for comparing multiple algorithms over multiple datasets, being based on
the average ranks of the algorithms across all datasets. We use a p-value of 0.05.
Under the Nemenyi test, {x}�{z} indicates that algorithm x is statistically
significantly more likely to be more favourable than z.

In [28] the use of RAM-Hours is introduced as an evaluation measure of the
resources used by streaming algorithms. Every GB of RAM deployed for 1 hour
equals one RAM-Hour.

3.3 Parameter Selection

As discussed in Section 1, both lazy-learning and batch-incremental methods
require a window parameter, which determines the number of examples used by
their model (the only difference being that lazy methods learn from this window
incrementally rather than as a batch). We conduct an analysis on the effects of
different window-size parameters for kNN and AWE- methods. Table 2 displays
results for a variety of window/batch sizes, which provides justification for our
choice of parameters in the following section: w = 1000 and w = 500 for kNN and
AWE-, respectively. Although w = 5000 results in slightly better accuracy for kNN,
the computation cost is clearly potentially prohibitive. The setting of w = 500
appears to work well for all batch methods both with respect to classification
and time and memory performance. However, the optimal w is different for each
stream. For example as we see in Table 3, AWE-J48 has no clear optimal value
for all datasets.



Table 2: Finding the best window size for kNN, and AWE-.
(a) Average accuracy

−w 100 −w 500 −w 1000 −w 5000
kNN 66.32 80.24 82.33 82.63
AWE-J48 70.72 77.36 76.90 73.76
AWE-LR 68.77 69.62 67.83 65.56
AWE-SMO 67.13 70.77 70.07 67.67

(b) Total Time (seconds)

−w 100 −w 500 −w 1000 −w 5000
kNN 2,180 9,993 18,349 71,540
AWE-J48 3,809 6,883 10,865 28,429
AWE-LR 9,659 66,757 10,247 10,112
AWE-SMO 13,860 5,800 6,414 39,298

(c) RAM-Hours

−w 100 −w 500 −w 1000 −w 5000
0.13 1.11 2.98 41.27
1.96 8.49 21.81 221.66

12.65 48.07 22.47 67.52
3.19 4.12 9.36 255.96

Table 3: Finding the best window size for AWE-J48.
−w 100 −w 500 −w 1000 −w 5000

20 Newsgroups 94.30 94.74 95.06 94.60
IMDB 55.09 53.59 53.54 54.33
CovType 55.79 87.82 85.58 76.05
Electricity 78.47 75.27 74.37 65.10
Poker 76.06 77.89 79.32 75.98
CovPokElec 68.03 81.60 81.45 74.32
LED(50000) 70.60 71.99 72.03 71.37
SEA(50) 84.95 88.03 88.56 88.68
SEA(50000) 84.63 87.71 88.16 88.43
HYP(10,0.0001) 66.69 71.58 73.41 78.63
HYP(10,0.001) 70.95 75.79 77.69 79.94
RBF(0,0) 69.42 83.01 84.96 87.38
RBF(50,0.0001) 69.12 79.30 77.05 60.75
RBF(10,0.0001) 68.49 81.79 82.78 80.79
RBF(50,0.001) 53.78 50.95 38.55 24.50
RBF(10,0.001) 65.18 76.76 77.92 79.36
Average 70.72 77.36 76.90 73.76

4 Results: Batch-incremental versus Instance-Incremental

Table 4 displays the final accuracy and resource use (time and RAM-hours)
of methods and their parameters (see Table 1). Accuracy is measured as the
final percentage of examples correctly classified over the test/train inter-leaved
evaluation.

Naive Bayes (NB) uses very few resources, but its accuracy is poor compared
to all other methods; with a few exceptions: HYP(10,0.0001), the SEA streams,
and to some extent on Electricity and IMDB. Such low average Naive Bayes
accuracy indicates that the concepts to be learned are reasonably hard problems.
A similar scenario is observed for Stochastic Gradient Descent (SGD) which is
only seriously competitive on the 20 Newsgroups dataset.

As claimed in the literature, Hoeffding Trees (HT) are generally a better
option than NB for instance-incremental methods. Table 4 provides an impor-
tant comparison between Hoeffding trees and non-incremental decision trees in
a batch setting (AWE-J48). It shows that, although the computational cost of



Table 4: Comparison of all methods.
(a) Accuracy

NB kNN HT AWE-J48 LB-HT SGD AWE-LR AWE-SMO LB-kNN

20 Newsgroups 68.13 94.86 94.30 94.74 94.38 94.86 88.43 95.56 DNF
IMDB 60.42 60.82 63.51 53.59 61.76 63.79 53.96 54.52 62.44
CovType 60.52 92.22 80.31 87.82 88.61 60.70 84.50 84.24 92.39
Electricity 73.36 78.38 79.20 75.27 88.77 57.58 70.55 68.56 80.78
Poker 59.55 69.35 76.07 77.89 94.97 68.92 60.90 60.38 70.34
CovPokElec 24.24 78.41 79.34 81.60 92.41 68.06 70.07 69.77 79.09
LED(50000) 54.02 63.20 68.65 71.99 73.15 11.84 73.03 72.80 69.77
SEA(50) 85.37 86.80 86.42 88.03 88.24 85.41 89.44 89.57 88.00
SEA(50000) 85.38 86.55 86.42 87.71 88.80 85.21 89.01 89.15 87.74
HYP(10,0.0001) 91.25 83.29 89.04 71.58 88.06 79.54 93.73 93.41 87.10
HYP(10,0.001) 70.91 83.33 78.77 75.79 84.85 71.10 91.75 92.02 86.91
RBF(0,0) 51.21 88.99 83.25 83.01 89.70 16.63 46.91 50.52 90.59
RBF(50,0.0001) 30.99 89.36 45.49 79.30 76.70 16.63 54.89 57.85 90.49
RBF(10,0.0001) 52.10 89.30 79.24 81.79 85.54 16.63 50.96 52.80 90.73
RBF(50,0.001) 29.14 84.03 32.29 50.95 55.72 16.63 46.48 50.42 82.10
RBF(10,0.001) 51.96 88.34 76.39 76.76 81.82 16.63 49.37 50.74 88.93
Average 59.29 82.33 74.92 77.36 83.34 51.89 69.62 70.77 83.16

Nemenyi significance: kNN�NB; kNN�SGD; LB-HT�NB; LB-HT�SGD; LB-kNN�NB; LB-kNN�SGD;

(b) Time (seconds)

NB kNN HT AWE-J48 LB-HT SGD AWE-LR AWE-SMO LB-kNN

20 Newsgroups 93.48 11,544.68 177.34 3,448.89 4,996.64 5.45 3,187.23 293.93 DNF
IMDB 27.85 2,761.45 49.54 1,855.76 1,563.07 1.49 1,240.25 224.85 63,784.28
CovType 18.52 266.18 20.06 91.72 247.59 5.43 823.42 257.51 6,708.11
Electricity 0.64 7.05 1.15 4.64 8.72 0.32 4.32 9.73 163.61
Poker 8.88 177.82 9.26 81.80 127.59 2.29 381.05 322.51 3,454.15
CovPokElec 47.72 1,447.92 46.77 284.39 1,032.43 8.60 2,006.50 899.75 30,329.08
LED(50000) 9.14 447.36 15.90 135.10 189.13 2.04 57,466.83 1,662.00 10,816.07
SEA(50) 2.90 107.82 4.63 63.46 94.44 1.30 56.04 91.96 3,138.38
SEA(50000) 3.01 112.84 4.80 60.83 94.62 1.41 56.18 95.59 3,125.99
HYP(10,0.0001) 4.33 222.72 8.46 103.50 221.79 1.45 191.67 164.04 6,492.46
HYP(10,0.001) 4.34 222.26 9.70 103.62 224.57 1.46 193.61 159.64 6,379.68
RBF(0,0) 8.20 206.97 13.90 136.90 203.74 2.38 227.62 357.36 6,279.06
RBF(50,0.0001) 8.24 200.41 14.92 128.60 236.72 2.41 234.64 332.03 7,494.13
RBF(10,0.0001) 7.31 202.51 13.00 132.31 200.82 1.70 231.30 311.82 5,523.36
RBF(50,0.001) 8.34 218.12 14.16 120.13 234.15 2.41 225.13 303.85 6,765.54
RBF(10,0.001) 7.40 202.84 12.94 131.49 201.36 1.68 231.23 313.33 5,858.01
Total 260.28 18,348.95 416.53 6,883.14 9,877.38 41.82 66,757.02 5,799.90 166,311.91

(c) RAM-Hours (MB)

NB kNN HT AWE-J48 LB-HT SGD AWE-LR AWE-SMO LB-kNN

20 Newsgroups 0.01 2.18 3.61 4.94 340.77 0.00 10.24 0.63 DNF
IMDB 0.00 0.41 0.38 2.63 20.39 0.00 3.76 0.44 33.95
CovType 0.00 0.04 0.01 0.08 0.05 0.00 0.75 0.25 4.21
Electricity 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04
Poker 0.00 0.01 0.00 0.03 0.20 0.00 0.13 0.12 0.88
CovPokElec 0.00 0.25 0.11 0.33 1.95 0.00 2.31 1.12 20.94
LED(50000) 0.00 0.03 0.01 0.10 0.49 0.00 30.38 0.95 4.47
SEA(50) 0.00 0.00 0.00 0.01 1.95 0.00 0.01 0.02 0.65
SEA(50000) 0.00 0.00 0.00 0.01 0.89 0.00 0.01 0.02 0.65
HYP(10,0.0001) 0.00 0.01 0.00 0.04 13.30 0.00 0.06 0.05 1.77
HYP(10,0.001) 0.00 0.01 0.01 0.04 1.54 0.00 0.06 0.05 1.75
RBF(0,0) 0.00 0.01 0.00 0.06 3.01 0.00 0.07 0.11 1.69
RBF(50,0.0001) 0.00 0.01 0.00 0.05 0.20 0.00 0.07 0.10 2.01
RBF(10,0.0001) 0.00 0.01 0.00 0.06 3.31 0.00 0.07 0.09 1.50
RBF(50,0.001) 0.00 0.01 0.00 0.05 0.02 0.00 0.07 0.09 1.81
RBF(10,0.001) 0.00 0.01 0.00 0.06 3.08 0.00 0.07 0.09 1.59
Total 0.02 2.98 4.15 8.49 391.16 0.00 48.07 4.12 77.90
Total without 20 Newsgroups 0.01 0.80 0.54 3.55 50.39 0.00 37.83 3.49 77.90



(a) A selection of methods on Electricity dataset, accuracy (left) time (right)

(b) A selection of methods on SEA dataset, accuracy (left) time (right)

Fig. 1: Classification accuracy (left) and running time (right) over time for meth-
ods on a selection of datasets.

AWE-J48 is often up to 10 times greater than Hoeffding trees (see also Figure 1),
it often improves on them–for example on the RBF(50,0.0001) and CovType
streams. On the other hand, on IMDB and Electricity, this trend is reversed;
HT is superior. These two real-world datasets do not contain any obvious abrupt
concept drift, thus supporting the claim that batch approaches automatically
deal to some extent with concept drift. Figure 1b clearly shows the importance
of adapting or changing models when there is concept drift.

Under a modern adaptive bagging scheme (LB-HT) (which resets models when
drift is detected) Hoeffding Trees are powerful, albeit – in many cases – at an
increased computational cost, particularly with regard to RAM-Hours.

The lazy kNN method performs very well across all data sources, and even as
a standalone method it is one of the highest-performing methods overall. This is
particularly surprising since kNN’s model is based on an internal buffer of 1000
instances; kNN models a concept well with a relatively small number of examples.
We also note that in our experiments AWE is based only upon n × w = 5000
instances; a small number relative to the size of the streams. The strengths
of kNN are even apparent on datasets without drift, but it competes best on
the most evolving data since it models new examples as soon as they arrive in
the stream. Only LB-HT can compete seriously with the kNN methods, but the



difference in accuracy is insignificant. It is true that the time costs of kNN can be
quite high, and that LB-kNN is one of the most expensive methods to run, but
this can be mitigated somewhat by different search techniques, as explained in
[3]. kNN is particularly robust: it obtains very good results across a wide range
of data sources.

As expected, AWE gives different performance depending on its base classi-
fier. This illustrates a key advantage of batch-methods: any existing classifier
can be used. Under all the SEA and HYP streams and the 20 Newsgroups
text dataset AWE-SMO obtains the best accuracy of all methods. On the other
hand; its accuracy is very poor compared to several other methods on the RBF
streams and the Electricity and Poker datasets; contributing significantly to its
overall average performance. With the exception of the HYP streams, Logistic
Regression (AWE-LR) does not make much of an impact in classification accuracy,
and clearly runs very slowly on many datasets.

A summary of the most important observations are:

– storing a model from recent examples can be as effective as learning incre-
mentally and keeping statistics from hundreds of thousands of examples,

– the best batch size is dependent on the data stream in consideration; and

– certain batch methods excel on certain problems, but lazy learners provide
similar or better classification performance using less resources.

5 Conclusions

We investigated a variety of methods from two distinct branches of the data-
stream literature: instance-incremental and batch-incremental approaches to
classification. Our extensive and varied empirical evaluation of real and syn-
thetic data sources of up to 1 million training instances with diffrent types and
magnitudes of concept drift provide us with enough evidence to draw some im-
portant novel conclusions: instance-incremental methods perform similarly to
their equivalent batch-learning implementation while using fewer resources. An
explicit drift-detection and adaption mechanism is essential for any learner which
does not automatically discard old information. We found lazy methods perform
exceptionally well when using just a buffer of the 1000 most recent instances,
even compared to powerful incremental methods.

References

1. Bifet, A., Holmes, G., Pfahringer, B., Kirkby, R., Gavaldà, R.: New ensemble
methods for evolving data streams. In: KDD. (2009) 139–148

2. Beringer, J., Hüllermeier, E.: Efficient instance-based learning on data streams.
Intelligent Data Analysis 11(6) (2007) 627–650

3. Zhang, P., Gao, B.J., Zhu, X., Guo, L.: Enabling fast lazy learning for data streams.
In: ICDM. (2011) 932–941



4. John, G.H., Langley, P.: Estimating continuous distributions in bayesian classi-
fiers. In: Eleventh Conference on Uncertainty in Artificial Intelligence, San Mateo,
Morgan Kaufmann (1995) 338–345

5. Domingos, P., Hulten, G.: Mining high-speed data streams. In: KDD. (2000) 71–80
6. Bifet, A., Gavaldà, R.: Learning from time-changing data with adaptive windowing.

In: SDM. (2007)
7. Holte, R.C.: Very simple classification rules perform well on most commonly used

datasets. Machine Learning 11 (1993) 63–91
8. Caruana, R., Niculescu-Mizil, A.: An empirical comparison of supervised learning

algorithms. In: ICML. (2006) 161–168
9. Bottou, L.: Online algorithms and stochastic approximations. Online Learning

and Neural Networks (1998)
10. Oza, N.C., Russell, S.J.: Experimental comparisons of online and batch versions

of bagging and boosting. In: KDD. (2001) 359–364
11. Oza, N., Russell, S.: Online bagging and boosting. In: Artificial Intelligence and

Statistics 2001, Morgan Kaufmann (2001) 105–112
12. Bifet, A., Gavaldà, R.: Adaptive learning from evolving data streams. In: IDA.

(2009) 249–260
13. Bifet, A., Holmes, G., Pfahringer, B.: Leveraging bagging for evolving data streams.

In: ECML/PKDD (1). (2010) 135–150
14. Qu, W., Zhang, Y., Zhu, J., Qiu, Q.: Mining multi-label concept-drifting data

streams using dynamic classifier ensemble. In: ACML. (2009) 308–321
15. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using

ensemble classifiers. In: KDD ’03, New York, NY, USA, ACM (2003) 226–235
16. Spyromitros-Xioufis, E., Spiliopoulou, M., Tsoumakas, G., Vlahavas, I.: Dealing

with concept drift and class imbalance in multi-label stream classification. In:
IJCAI. (2011) 1583–1588

17. Gama, J., Medas, P., Castillo, G., Rodrigues, P.P.: Learning with drift detection.
In: SBIA. (2004) 286–295

18. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: Massive Online Analysis.
Journal of Machine Learning Research (JMLR) (2010)

19. Street, W.N., Kim, Y.: A streaming ensemble algorithm (SEA) for large-scale
classification. In: KDD. (2001) 377–382

20. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In:
KDD. (2001) 97–106

21. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-
sion Trees. Wadsworth (1984)

22. Asuncion, A., Newman, D.: UCI machine learning repository (2007)
23. Gama, J., Rocha, R., Medas, P.: Accurate decision trees for mining high-speed

data streams. In: KDD. (2003) 523–528
24. Harries, M.: Splice-2 comparative evaluation: Electricity pricing. Technical report,

The University of South Wales (1999)
25. Lang, K.: The 20 newsgroups dataset. “http://people.csail.mit.edu/jrennie/

20Newsgroups/” (2008)
26. Read, J., Bifet, A., Holmes, G., Pfahringer, B.: Scalable and efficient multi-label

classification for evolving data streams. Machine Learning (2012) 1–30
27. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. The

Journal of Machine Learning Research 7 (2006) 1–30
28. Bifet, A., Holmes, G., Pfahringer, B., Frank, E.: Fast perceptron decision tree

learning from evolving data streams. In: PAKDD. (2010)


